Efficient Marginalization-Based MCMC Methods for Hierarchical Bayesian Inverse Problems
نویسندگان
چکیده
منابع مشابه
FEM-Based Discretization-Invariant MCMC Methods for PDE-constrained Bayesian Inverse Problems
We present a systematic construction of FEM-based dimension-independent (discretization-invariant) Markov chain Monte Carlo (MCMC) approaches to explore PDE-constrained Bayesian inverse problems in infinite dimensional parameter spaces. In particular, we consider two frameworks to achieve this goal: Metropolize-then-discretize and discretize-then-Metropolize. The former refers to the method of ...
متن کاملStochastic spectral methods for efficient Bayesian solution of inverse problems
We present a reformulation of the Bayesian approach to inverse problems, that seeks to accelerate Bayesian inference by using polynomial chaos (PC) expansions to represent random variables. Evaluation of integrals over the unknown parameter space is recast, more efficiently, as Monte Carlo sampling of the random variables underlying the PC expansion. We evaluate the utility of this technique on...
متن کاملAn Efficient MCMC Method for Uncertainty Quantification in Inverse Problems
The connection between Bayesian statistics and the technique of regularization for inverse problems has been given significant attention in recent years. For example, Bayes’ law is frequently used as motivation for variational regularization methods of Tikhonov type. In this setting, the regularization function corresponds to the negative-log of the prior probability density; the fit-to-data fu...
متن کاملDiscretization-Invariant MCMC Methods for PDE-constrained Bayesian Inverse Problems in Infinite Dimensional Parameter Spaces
In this paper we target at developing discretization-invariant, namely dimension-independent, Markov chain Monte Carlo (MCMC) methods to explore PDEconstrained Bayesian inverse problems in infinite dimensional parameter spaces. In particular, we present two frameworks to achieve this goal: Metropolize-then-discretize and discretize-then-Metropolize. The former refers to the method of first prop...
متن کاملEfficient Gaussian Sampling for Solving Large-Scale Inverse Problems using MCMC Methods
The resolution of many large-scale inverse problems using MCMC methods requires a step of drawing samples from a high dimensional Gaussian distribution. While direct Gaussian sampling techniques, such as those based on Cholesky factorization, induce an excessive numerical complexity and memory requirement, sequential coordinate sampling methods present a low rate of convergence. Based on the re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM/ASA Journal on Uncertainty Quantification
سال: 2019
ISSN: 2166-2525
DOI: 10.1137/18m1220625